انت هنا الان : شبكة جامعة بابل > موقع الكلية > نظام التعليم الالكتروني > مشاهدة المحاضرة

قانون نيوتن في الجذب العام

Share |
الكلية كلية التربية للعلوم الصرفة     القسم قسم الفيزياء     المرحلة 2
أستاذ المادة سلار حسين ابراهيم الزرقاني       10/29/2021 7:04:35 AM
أما العالم اسحق نيوتن (Isaac Newton) عام (1642-1727) م فقد درس الضوء وصمم أول مرقب فلكي عاكس، ووضع ثلاثة قوانين مهمة في الحركة والتي كانت الأساس للميكانيك التقليدي (الكلاسيكي)، كما استعان نيوتن بقانون كبلر الثالث، ومنه توصل إلى قانونه المشهور في الجاذبية والذي ينص على أن كل كتلتين في الكون تجذب أحداهما الأخرى بقوة تتناسب طردياً مع حاصل ضرب الكتلتين وعكسياً مع مربع البعد بين مركزيهما. وهذا القانون يكتب كالتالي:-



حيث أن:-
M1، : M2 تمثل كتلة الجسمين الأول والثاني على التوالي.
r : هي البعد بين مركزي الجسمين و G ثابت الجاذبية العام. ويمكن استعمال قانون نيوتن للجاذبية في حساب الجاذبية السطحية، فلو كانت كتلة الجسم m قرب سطح الأرض، فان مقدار القوة المؤثرة عليه ستكون:


حيث
ME هي كتلة الأرض (5.97 × 1024 kg )
RE نصف قطر الأرض(6.378 × 106 m)،
وG ثابت الجذب العام N.m2/kg2) 11-10 × 6.67 ( .
و يستعاض عن F بـ mg وبذلك تصبح المعادلة (1-2) كالتالي:


وبتعويض القيم أعلاه في المعادلة (1-3) ينتج أن: g = 9.8 m/s2


أما إذا كان الجسم يبعد مسافة قدرها h فوق سطح الأرض، أو مسافة قدرها r عن مركز الأرض حيث r = RE+h فان قيمة قوة الجاذبية المؤثرة على الجسم ستكون كالتالي:




أما حالة السقوط الحر فان قيمة F سوف تكون مساوية لـ حيث هو التعجيل للسقوط الحر عند الارتفاع، وبتعويض هذا التعبير في المعادلة(1-4) ينتج أن:



وهذه المعادلة تبين تغير التعجيل g مع الارتفاع، أي إن التعجيل يقل مع زيادة الارتفاع.

مثال (1): قمر صناعي صمم ليوضع في مدار يبعد 400 كيلومتر عن سطح الارض، بعد اكتماله فإنه سوف يمتلك وزن مقداره ×106 4.5 نيوتن(على سطح الأرض)، ما هو وزنه عند المدار؟ علماً أن كتلة الأرض(5.97 × 1024 kg ) ونصف قطر الأرض(6.378 × 106 m) وان ثابت الجذب العام= N.m2/kg2) 11-10 × 6.67 (.
الحـــــــل:
نحسب كتلة القمر الصناعي والتي تكون ثابتة على سطح الارض وعند المدار من خلال العلاقة التالية:

فينتج ان kg ×10445.9m=
نحسب وزن القمر الصناعي عند المدار من خلال العلاقة
حيث يمكن حساب باستعمال المعادلة (1-5)

فينتج أن وزن القمر الصناعي عند المدار
ماذا تستنتج من ذلك؟



مثال (2): طائرة لنقل المسافرين كتلتها وهي على ارض المطار 120طن ومقدار ما تحمله من كتلة المسافرين وأمتعتهم 80 طن, احسب وزن الطائرة الكلي قبل الإقلاع وبعد أن تحلق على ارتفاع(km 30) عن سطح الارض. علماً أن كتلة الأرض(5.97 × 1024 kg ) ونصف قطرها (6.378 × 106 m) وان ثابت الجذب العام= N.m2/kg2) 11-10 × 6.67 ( .
الحـــــــل:
لغرض حساب وزن الطائرة على الارض نجمع كتلها وكتلة ما تحمله ثم نضرب الناتج بمقدار التعجيل الارضي فنحصل على وزن الطائرة الكلي قبل الإقلاع.


ولحساب وزن الطائرة بعد التحليق نستخدم المعادلة (1-5).






المادة المعروضة اعلاه هي مدخل الى المحاضرة المرفوعة بواسطة استاذ(ة) المادة . وقد تبدو لك غير متكاملة . حيث يضع استاذ المادة في بعض الاحيان فقط الجزء الاول من المحاضرة من اجل الاطلاع على ما ستقوم بتحميله لاحقا . في نظام التعليم الالكتروني نوفر هذه الخدمة لكي نبقيك على اطلاع حول محتوى الملف الذي ستقوم بتحميله .
الرجوع الى لوحة التحكم